Testing polynomial covariate effects in linear and generalized linear mixed models.

نویسندگان

  • Mingyan Huang
  • Daowen Zhang
چکیده

An important feature of linear mixed models and generalized linear mixed models is that the conditional mean of the response given the random effects, after transformed by a link function, is linearly related to the fixed covariate effects and random effects. Therefore, it is of practical importance to test the adequacy of this assumption, particularly the assumption of linear covariate effects. In this paper, we review procedures that can be used for testing polynomial covariate effects in these popular models. Specifically, four types of hypothesis testing approaches are reviewed, i.e. R tests, likelihood ratio tests, score tests and residual-based tests. Derivation and performance of each testing procedure will be discussed, including a small simulation study for comparing the likelihood ratio tests with the score tests.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Semiparametric models for missing covariate and response data in regression models.

We consider a class of semiparametric models for the covariate distribution and missing data mechanism for missing covariate and/or response data for general classes of regression models including generalized linear models and generalized linear mixed models. Ignorable and nonignorable missing covariate and/or response data are considered. The proposed semiparametric model can be viewed as a se...

متن کامل

THE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)

Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes.  Small area estimation is needed  in obtaining information on a small area, such as sub-district or village.  Generally, in some cases, small area estimation uses parametric modeling.  But in fact, a lot of models have no linear relationship between the small area average and the covariat...

متن کامل

Restricted likelihood ratio tests for linearity in scalar-on-function regression

We propose a procedure for testing the linearity of a scalar-on-function regression relationship. To do so, we use the functional generalized additive model (FGAM), a recently developed extension of the functional linear model. For a functional covariate X(t), the FGAM models the mean response as the integral with respect to t of F{X(t), t} where F (·, ·) is an unknown bivariate function. The F...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Statistics surveys

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2008